
Towards a Model-driven Development of

Monitored Processes

Christof Momm, Robert Malec, Sebastian Abeck

Cooperation & Management

Institut für Telematik

Universität Karlsruhe (TH)

76128 Karlsruhe

{momm,malec,abeck}@cm-tm.uka.de

Abstract

An integrated management of business processes demands a strictly process-oriented devel-

opment of the supporting IT. Process-orientation is especially promoted by Service-Oriented

Architectures (SOA), where loosely coupled business services are being composed to executa-

ble processes. In this paper we present a model-driven methodology for a top-down develop-

ment of a process-oriented IT support based on a SOA. In contrary to existing approaches we

also include the monitoring required for business process controlling and introduce meta-

models for the specification of process performance indicators in conjunction with the necessary

monitoring. Furthermore, we show how these models are transformed to executable process

definitions extended by the required monitoring activities.

1 Introduction

Today, companies demand IT support that is strongly aligned with their business processes,

which in turn are compliant with their (strategic) business goals. For achieving this, goal-driven

approaches to an integrated Business Process Management (BPM) have been proposed

[AaHW03; MuRo04]. For controlling goal achievement in business processes, solutions are

required that allow a continuous, “real-time” monitoring of the performance within the IT

support based on quantitative process performance indicators (PPI). This aspect is also referred

to as “Business Activity Monitoring” (BAM) in relevant literature. The discussed BAM

architectures [JeSC03; McSc04] have in common that they abstract from the IT systems

implementing the business processes by introducing management relevant business events. The

PPIs are defined and evaluated on the basis of these business events, which are generated by

event adapters triggered by an instrumentation of the underlying IT systems. Because the

business events and their associated PPIs as well as the existing IT support are extremely

company-specific, the implementation of the required instrumentation is itself very time

consuming and is elongated if facing an extremely heterogeneous IT support.

The heterogeneity of the IT support can be significantly reduced by establishing a company-

wide Service-Oriented Architecture (SOA) in which the business processes are consequently

realized through orchestrations on the business process layer of a SOA [Le03; LeRS02]. This is

accomplished by either using the Business Process Execution Language (BPEL) [ACDG03]

and web services or other SOA platforms, for example CORBA and an appropriate workflow

engine. Unfortunately, a uniform methodology for realizing the required monitoring – including

the instrumentation - does not as yet exist. It is still very specific to the employed SOA

platform. Accordingly, a solution for specifying the monitoring in a platform-independent way

and a clear methodology for breaking down PPIs into appropriate measuring points within the

orchestrations or queries on logging data is necessary [HaRa01].

Taking these drawbacks into account, in this paper we propose a top-down approach for devel-

oping a uniform IT support based on a SOA in conjunction with the monitoring aspects required

for processing the PPIs. To enable the support of different SOA platforms as well as an auto-

mated generation of the required instrumentation and monitoring infrastructure, we decided to

build the approach on the principles of the Model Driven Architecture (MDA) proposed by the

OMG [MiMu01]. The approach is demonstrated using a concrete business process taken from

the field of higher education. So far, the target platform is limited to most common SOA

platform based on BPEL and web services.

2 Related Work

For developing a service-oriented IT support tightly aligned with the underlying business proc-

esses, various model-driven approaches have been proposed [BaMR04; KHSW05]. Thereby,

the business processes are specified by means of computation-independent business process

models (CIM), for instance based on Petri nets, Event-driven Process Chains (EPCs) or the

Business Process Modeling Notation (BPMN). These process models are systematically refined

and transformed into platform-independent models (PIM) of executable business processes (i.e.

orchestrations). Finally, these PIMs are transformed to platform-specific models (PSM), in par-

ticular to executable process definitions which are mainly based on BPEL. So far, the presented

approaches deliver solutions to the development of the functional aspects but do not consider

monitoring and control (i.e. management) aspects.

For component-based software development this aspect has already been addressed. [PAVB04]

present an approach which integrates Quality of Service (QoS) aspects into a model-driven

development process of component-based applications and allows for an automated generation

of the required monitoring infrastructure and component instrumentation. As the service-

orientation leads to a significant reduction of complexness, some essential adaptations are

necessary to seamlessly integrate monitoring aspects into a model-driven SOA development

process.

To enable BAM on the orchestrations, the generic solution proposed by [JeSC03] can be em-

ployed. As already pointed out, in this case the instrumentation of the involved IT systems

would be very time consuming as it has to be accomplished manually for each orchestration and

execution engine. Furthermore, the presented implementation is based on proprietary technolo-

gies, which particularly complicates the monitoring of cross-enterprise business processes.

Taking especially this shortcoming into account [McSc04] propose a framework for analyzing

and measuring business performance on the basis of web services. In doing so, the whole BAM

system is encapsulated in a Solution Manager Service providing a standardized interface for the

instrumented IT systems. The information required for evaluating the PPIs is transferred to the

Solution Manager Service by extending the BPEL process definition by management calls.

[Mc03] amplifies this BPEL instrumentation, but does not address the questions how to system-

atically develop such instrumented orchestration in a top-down fashion and how to automate the

generation of these artifacts.

3 Approach to a Model-Driven Orchestration Development

Within this section we introduce our general idea for a model-driven development of monitored

orchestrations. Figure 1 provides an overview of our approach.

Computation-

Independent

Models (CIM)

Platform-

Independent

Models (PIM)

Platform-

Specific

Models (PSM)

FUNCTIONAL MODELS MONITORING MODELS

Business Process

Model (BPMN)
PPI Specification

Orchestration

Model (BPMN)

BPEL/WS specific

Instrumented Orchestration

Model (BPMN)

Service Interface

Definition
PPI Monitoring Model

WSDL
Monitoring

Infrastructure

Instrumented BPEL Process

Definition

Platform-

Specific

Code (PSC)

Monitoring

Infrastructure

Implementation

Figure 1: Model-Driven Orchestration Design

According to this we distinguish between functional and monitoring models on three different

layers of abstraction (CIM, PIM and PSM). The target platform [MiMu01] for the functional

parts is a specific SOA platform. These specifics are abstracted by the PIM. The same holds for

the monitoring. There are several existing solutions, how monitoring can be realized. The

instrumentation for instance can be implemented by adding sensors to the orchestrations or

querying the audit trail. In practice, the vendors of a BPEL or other workflow engine provide

their own, platform-specific monitoring solutions. Our goal is to support the different ap-

proaches to implementing the monitoring of orchestrations by means of a platform-independent

monitoring model, which can be transformed (automatically) into specific models. This paper

focuses on the generation of the specific BPEL process definitions (or code) extended by sen-

sors as a first step towards this objective.

The CIMs are used for specifying the business processes along with the goals in a way that is

independent from the IT support. Thereby, various modeling notations are available for

modeling business processes. As pointed out in [BaMR04] an MDA approach allows

supporting all kinds of notations by transforming them into an appropriate meta notation like the

Business Process Definition Metamodel (BPDM) [FrGJ04]. Due to the fact that the BPMN

standard defines mapping rules for a BPMN-to-BPEL transformation and is already supported

by a couple of development tools, it currently represents one of the most appropriate platform-

independent models [EmWA06]. Thus, we decided to also employ it for modeling the

functional aspects on the CIM level.

On the PIM layer the functional models of the CIM layer are transformed into BPMN-based

orchestration models describing the (machine) executable business processes as well as the ex-

ternal services invoked within the orchestration.

The high-level PPI specifications on the other hand are transformed into PPI monitoring mod-

els. Basically, these monitoring models define components for measuring the specified PPIs on

the basis of metrics and monitoring information, which are derived from the functional model.

The orchestration models along with the monitoring models are transformed into a platform-

specific instrumented orchestration model. Concretely, the applied transformation adds sensors

to the orchestration model which are required for evaluating the specified PPIs. And

furthermore, the specifics of the selected SOA implementation are added to the instrumented

orchestration models. Finally, the platform-specific code, namely the executable BPEL process

definitions, is generated from platform-specific model. These process definitions are extended

by monitoring sensors which pass the information on to a static monitoring infrastructure (MI).

This MI provides a uniform interface to a BAM system and offers the required monitoring

information for evaluating the specified business process goals.

The MI comprises several monitoring agents, which are possibly arranged in a hierarchical way.

Furthermore, several existing technologies, like for instance Web-Based Enterprise

Management (WBEM) could be employed for implementing this infrastructure. In this paper,

we limit the scope to a simple and static MI consisting of one monitoring agent for each

specified PPI. A more flexible design would require the creation of adequate models for

describing the details of the MI and the usage of the employed platform.

4 Computation-independent Modeling of Business Processes and Mapping

to Platform-independent Orchestration Models

For the formal modeling of business processes various notations are available. As pointed out in

section 3, we decided on BPMN for modeling business processes in a computation-independent

way. Thereby, the BPMN defines both the (graphical) notation and the semantics of a process

through the definition of a so-called Business Process Diagram (BPD) [EmWA06].

Figure 2 provides an overview of the underlying meta-model. The full specification is available

in [Wh04].

Graphical Object

Flow Object

Activity

Sub Process (Atomic) Task

Swimlane

PoolLane

Connecting Object

Sequence Flow Message Flow …

Data Object

Artefact

…Gateway

XOR OR AND

Event

Start End Intermediate

Process BPD

23..* *1

Figure 2: BPMN Meta-Model for Defining Business Processes in a Computation-Independent Way

In this section, the elements of a BPD which are important for understanding the monitoring

models presented in the following sections are briefly introduced. In general, a BPD is

comprised of activities performed by a certain organizational unit or role, a control flow

between the contained activities, artifacts, like for instance data objects, which are processed

within the activities, and events that may occur during process execution. The control flow is

modeled by means of Connecting Object elements, especially the Sequence Flow along with

Gateway elements for modeling parallel flows and conditioned branches. The process

participants are modeled through the construct Swimlane. A Pool indicates that the containing

process is owned by an independent organizational unit, whereas a Lane within a Pool specifies

that a certain role is responsible for the covered process parts. An exchange of messages

between two organizational units is described through a Connecting Object of type Message

Flow. By means of the element Sub Process a process may be further segmented.

Using these modeling elements a business analyst is able to model business processes from a

business perspective without regarding the involved IT. These models are refined and restruc-

tured to platform-independent orchestration models. Thereby, each activity is broken down to

an executable task. In fact, the orchestration model must not contain a non-executable activity.

The BPMN specifies the following concepts for defining orchestrations (

Figure 3).

Executable Task

Service Task Receive Task Send Task User Task

Message Data Object

Participant

Implementation

Web Service …

(Atomic) Task

1..*
1

1

1
*

1..*

10..*

Figure 3: BPMN Meta-Model for Defining Orchestrations

Hence, an Executable Task generally involves the exchange of one or more Messages associ-

ated with a Participant. Furthermore, an Implementation (Web Service or other adequate im-

plementations) is specified. The BPMN standard then distinguishes between four different kinds

of executable tasks. A Service Task involves a request-response or one-way invocation of an

operation provided by an external service. A Receive Task on the other hand awaits a message

from an external client offered as a service operation by the orchestration itself. In case such an

operation is of the type request-response a Send Task is used for returning the reply message to

the requestor. A User Task comes into play if the orchestration involves human interaction.

Within these tasks, a task message is assembled and delivered to an external task manager,

which amongst other things allocates the tasks to a responsible employee, provides a user

interface for the processing of the task and returns a task to the respective process as soon as it

is finished. The standardization of this mechanism is currently being tackled by WS-

BPEL4People initiative [KK+05]. The BPMN elements previously introduced for the CIM are

also used within the PIM to model the orchestration’s control flow. Note that the orchestration

model may be very different from a computation-independent model. Therefore, the transfor-

mation can from our point of view not be automated.

5 Specification of the Process Performance Indicators and the PPI

Monitoring Model

This section introduces newly developed meta-models for specifying PPIs for a process in a

computation-independent way as well as a platform-independent PPI monitoring model which

additionally defines how the specified PPIs are measured within the respective orchestration.

The meta-models are based on existing approaches presented in [BKPS04; PAVB04]. In

contrast to [BKPS04] we limited the scope to the specification of measurable, quantitative

indicators and disregarded qualitative process or business goals. For the evaluation of the

associated goals, an external BAM system could be employed

Figure 4 shows our meta-model for the specification of PPIs at the CIM level.

PPI

BasicPPI AggregatedPPI

Dimension

PPIMonitor

AggregationMetric

Process

1*

0..1*1..*

1

*

CurrentValue

TargetValue

AlarmValue

1

1

1
10..1

0..1

1

1 1

Figure 4: Meta-model for Performance Indicator Specification

A PPI is attached to the concept Process as part of the computation-independent process model.

Optionally a TargetValue indicating the objective as well as an AlarmValue defining a threshold

for an intervention may be specified. The PPI is further characterized by assigning a Dimension.

Thereby information like the data type, the direction (e.g. ascending or descending) and the unit

of the value are specified. The calculation of the mandatory CurrentValue on the basis of run-

time information provided by the underlying orchestration is handled by the PPIMonitor. This

aspect is tackled within the scope of the PPI monitoring model. Furthermore, we distinguish

between basic and aggregated PPIs. A BasicPPI represents an atomic indicator, which can be

measured within a single process instance whereas an AggregatedPPI spans multiple instances

and is either evaluated through an AggregationMetric operating on basic PPIs (e.g. mean or

variance) or directly calculated by the respective PPIMonitor.

Having the PPIs specified on the CIM level as a next step, the platform-independent

PPIMonitor has to be defined in order to obtain a full PPI monitoring model tailored to the

monitoring of orchestrations. The meta-model presented in Figure 5 has to be seen as an

extension of the PPI specification meta-model.

MonitoredObject

TimeStamp

ActivityInstance

StartTime
EndTime XORGatewayInstance

PossibleBranches

LastDecision

Process

FlowObject

Gateway Activity

XOR

FlowObjectInstance

+ Status

ProcessInstance

ProcessInstanceID

Status
StartTime

EndTime

PPIMonitor

OrchestationProbe

MonitoringMetric

EventProbe

1

1

1

1

1 1

11

AuditTrailProbe

1..*

1..*

1 1

1 1

[…]

Figure 5: Meta-Model for Specifying the PPI Monitoring Model

Basically, a PPIMonitor operates on one or more managed objects of the respective orchestra-

tion and determines the desired PPI as-is value by means of a predefined MonitoringMetric. The

managed objects thereby represent a management view on the process and hence capsulate in-

formation relevant for management [HeAN99]. As in our case the management functionality is

limited to the monitoring of PPIs; the concept is termed MonitoredObject. The MonitoredObject

of type ProcessInstance for example delivers information about the running process instance,

like its current Status (e.g. “active” or “completed”), its cycle time (StartTime, EndTime) and

the ProcessInstanceID, which is in orchestrations usually determined on the basis of a

predefined Correlation Set. Within the scope of a process instance the monitoring can be further

extended or refined to FlowObjects the process contains. Hence, a MonitoredObject of type

FlowObjectInstance is introduced which may not exist without a ProcessInstance. The

monitoring information required for a FlowObject depends on its concrete type. Hence, for each

monitoring-relevant FlowObject a correspondent MonitoredObject is defined, as for example

ActivityInstance or XORGatewayInstance. Whereas in the case of an Activity from a monitoring

perspective the cycle time is of interest, for a Gateway of type XOR we would i.e. like to know

the last decision. Depending on the PPIs that should be monitored, this information model for

processes has to be further extended.

To retrieve the desired monitoring information (e.g. state updates) for a specified

MonitoredObject from the underlying orchestration engine, an adequate instrumentation is re-

quired. The instrumentation is realized by means of OrchestrationProbes. Thereby, the infor-

mation can be either gathered on the basis of the audit trail provided by the engine or events that

are fired within the orchestration itself. Thus, a general distinction can be made between an

EventProbe and an AuditTrailProbe. In the next section, the necessary BPMN extensions for

defining and realizing an instrumentation based on EventProbes as well as the corresponding

transformation (i.e. model merge) of the orchestration model along with the PPI monitoring

model will be discussed. The generation of an AuditTrailProbe is not taken into consideration

within this paper.

6 Transformation of the Orchestration and PPI Monitoring Model into an

Instrumented Orchestration Model

To obtain monitoring information by means of EventProbes an extension of the BPMN-based

orchestration meta-model is required which allows for the specification of the accordant instru-

mentation (Figure 6).

Executable Task

Service Task…

(Atomic) Task

Monitoring Task

Message Data Object

Monitoring Data Object

MonitoringAgent

MonitoringMessage

Implementation

MAImplementation

WSBasedMA
MonitoredObject

Participant

*
1

1
1..*

1

1

1

* *
1

1

11 1

1

*

1..*

1..*

EventProbe
1

1..*

1

1..*

1
1

Figure 6: Extended BPMN Meta-Model for Specifying Instrumented Orchestrations

Thus, the monitoring information of a MonitoredObject provided by an EventProbe is gathered

on basis of MonitoringMessages delivered by MonitoringTasks. A MonitoringMessage thereby

contains a Monitoring Data Object, which only represents the BPMN version of the

MonitoredObject (see Figure 5) and holds information about the current state. A Monitoring

Task is a special kind of Service Task. But in contrast to those it only provides a one-way com-

munication to the associated monitoring agent (MA), which is implemented by means of the

MAImplementation. This implementation particularly realizes one or more EventProbes,

meaning that it receives MonitoringMessages sent by a process instance through Monitoring-

Tasks that belong to a distinct EventProbe. The probe update is then passed on to all associated

PPIMonitors, which instantly calculate their CurrentValue on basis of the MonitoredObject’s

state information provided by the probe by applying the predefined MonitoringMetric. The

MAImplementation may rely on web services or other technologies. As we focus on a SOA

implementation on the basis of BPEL and web services, we target a WSBasedMA.

The MonitoringsTasks required for an EventProbe have to be placed at appropriate positions in

the existing orchestration model. These positions depend on the concrete type of the

MonitoredObject the probe is responsible for. In the following we will explain the basic idea of

how the instrumented BPEL orchestration model is created from the orchestration model along

with the PPI monitoring model (Figure 7). The approach is exemplified using the simple case of

monitoring an activity.

The upper pool depicts a very simple orchestration model comprising of two activities of type

Executable Task (et1 and et2) which are executed in a sequence. The activity et1 should be

monitored on basis of an EventProbe providing the respective MonitoredObject of type

ActivityInstance.

P
o
o
l
X

et1

<<Executable Task>>

et1

<<Executable Task>>

et2

<<ET>>

et2

<<ET>>

<MyProcessProbe type=“EventProbe”

MonitoredObject=“MyProcessInstance”>

<MAImplementation […] />

</ MyProcessProbe >

<MyProcessProbe type=“EventProbe”

MonitoredObject=“MyProcessInstance”>

<MAImplementation […] />

</ MyProcessProbe >

<ET1Probe type=“EventProbe”

MonitoredObject=“ET1Instance”>

<MAImplementation […] />

</ ET1Probe >

<ET1Probe type=“EventProbe”

MonitoredObject=“ET1Instance”>

<MAImplementation […] />

</ ET1Probe >

P
o
o
l
X

Et2

<<ET>>

Et2

<<ET>>

Process

<<MT>>

Process

<<MT>>

Process

<<MT>>

Process

<<MT>>

ProcessInstance ProcessInstance

MonitoredET1MonitoredET1

et1

<<ET>>

et1

<<ET>>

Activity

<<MT>>

Activity

<<MT>>

Activity

<<MT>>

Activity

<<MT>>

ActivityInstance

Figure 7: Mapping to Instrumented BPEL Orchestration Model

As an ActivityInstance may not exist without a ProcessInstance (see Figure 5) and the identifier

of the running process instance is required for correlating the probes with the associated PPI,

respective EventProbes for the whole process (MyProcess) as well as for the executable task et1

have to be defined on basis of the PPI monitoring model and the instrumented orchestration

model. As the evaluated modelling tools that support BPMN do not allow for an extension of

the underlying BPMN meta-model, we decided to realize the association between concepts of

the two models by means of BPMN annotations holding an XML-based definition of the

EventProbe. This definition comprises all aspects needed for (automatically) creating the

BPMN instrumentation on basis of Management Tasks. These annotations have to fully match

the EventProbes specified within scope of the PPI monitoring model.

The transformation of the annotated orchestration model works as follows: In case of the

EventProbe for the whole process two MonitoringTasks are added to the orchestrations model,

namely one right after the StartEvent and one just before the EndEvent. The first Monitoring-

Task provides information about the determined process instance identifier and the starting time

whereas the second one only adds the end time.

The instrumentation of an activity in performed in a similar manner. The only difference is that

instead of the activity, a new sub process holding the activity itself along with the required

MonitoringTasks is created and inserted into the orchestration model. Within the scope of the

MonitoringTasks added before and after the actual activity, an ActivityInstance object is assem-

bled or updated and in each case sent to the responsible MA. As indicated by the association

between the ActivityInstance object and the ProcessInstance object, the process instance infor-

mation is also delivered within the according MonitoringMessage. Furthermore, the associated

EventProbe has to be included. This is accomplished by providing a fixed message part within

each MonitoringMessage holding this meta-information.

It becomes clear, that for each MonitoredObject a fixed procedure for adding the necessary in-

strumentation can be identified. Hence, the automation of these procedures can be realized by

applying adequate model transformations.

7 Case Study: Development of a Monitored Orchestration for the

Management of Examinations

The approach put forward in this paper has been applied to a practical scenario developed in the

context of the project “Karlsruher Integriertes InformationsManagement” (KIM) [JuMa05],

which targets the process and service-oriented redesign of a university’s business processes

along with the supporting IT. We particularly focused thereby on the business process within

the scope of the examination management. Figure 8 shows a simplified computation-

independent process model along with the refined platform-independent orchestration model for

supporting the activities within the examination management lifecycle.

U
n
iv
e
rs
it
y

S
tu
d
e
n
t

S
tu
d
e
n
t

Initiate examInitiate exam

Ascertain &

publish exam

terms

Ascertain &

publish exam

terms

Choose examChoose exam
Register to

exam

Register to

exam
Take examTake exam Get exam resultGet exam result

Receive &

process

registrations

Receive &

process

registrations

Assess, capture

and publish

exam results

Assess, capture

and publish

exam results

Organize and

conduct exam

event

Organize and

conduct exam

event

Registration

Receive & process registrations

Receive

Registration

<<Receive Task>>

Receive

Registration

<<Receive Task>>

Store Registration

<<Service Task>>

Store Registration

<<Service Task>>

Send Registration

Confirmation

<<Send Task>>

Send Registration

Confirmation

<<Send Task>>

Registration

Confirmation

Assess, capture and publish exam results

Retrieve Exam

Participant List

<<Service Task>>

Retrieve Exam

Participant List

<<Service Task>>

Capture Exam

Results

<<User Task>>

Capture Exam

Results

<<User Task>>

Store & Publish

Exam Results

<<Service Task>>

Store & Publish

Exam Results

<<Service Task>>

Figure 8: Process and Orchestration Model of the Examination Lifecycle Management

To demonstrate the approach, we limit the explanations to the activities relevant for the

orchestration model. The orchestration is initiated after the university has decided to conduct an

examination. In next step the terms for the exam are ascertained, transferred to the orchestration

and published. Subsequently, registrations from students are received and processed by the

orchestration. After the exam event has been organized and conducted, the exam results have to

be assessed, captured and published. The capturing and publishing of the results is also

supported by the orchestration. For this purpose, the final participant list is retrieved from the

EMService within a Service Task. Afterwards, a User Task for the capturing of the results is

initiated. As soon as all results are available they are returned to the orchestration by the

employed task management service and stored through a ServiceTask.

Due to the fact, that the exam results are required promptly for generating certificates and

evaluating preconditions within the registration process for further exams, one key performance

indicator is the students’ waiting time for their results. Hence, a university wide policy defines

that the capturing of the exam results must not exceed 3 weeks. If the results are still not avail-

able after 2 weeks, a reminder should be sent to the person in charge. Figure 9 shows the

formalized PPI based on an UML profile for the presented PPI specification model.

<<BasicPPI>>

DurationCaptureExamResultsPPI

<<CurrentValue>> ActualDuration:long

<<TargetValue>> TargetDuration:long

<<AlarmValue>> AlarmDuration:long

<<Dimension>>

DurationDimension

{PPIMonitor=DurationCaptureExamResultsPPIMonitor}

{Direction=Ascending

Type=long

Unit=Seconds}

{Process=ExammanagementProcess

Dimension=DurationDimension}

1

1

Figure 9: Specification of the PPI „DurationCaptureExamResults“

The assignments of a Process, a Dimension as well as the associated PPIMonitor for the attrib-

ute of stereotype CurrentValue to the specified PPI are realized through TaggedValues, either

for on level of the stereotyped class or attribute. The target and the alarm value could also be

realized through TaggedValues, but for the sake of flexibility we chose to define them as attrib-

utes. As soon as a concrete instance of the DurationCaptureExamResultsPPI is created (which

has to be done for each newly created process instance) these values have to be assigned with

three and two weeks.

As defined within the PPI specification the attribute ActualDuration is determined by the

DurationCaptureExamResultsPPIMonitor. How this monitor works is specified by means of

the PPI monitoring model is depicted on Figure 10.

<<PPIMonitor>>

DurationCaptureExamResultsPPIMonitor
<<MonitoringMetric>>

DurationCaptureExamResultsMetric

<<EventProbe>>

CaptureExamResultsProbe

<<ActivityInstance>>

CaptureExamResultsInstance

<<Status>>CaptureExamResultsStatus:String

<<StartTime>> CapturingStart:DateTime

<<EndTime>>CapturingEnd:DateTime

{Algorithm=ActivityInstanceDuration}
{MonitoringMetric=DurationMetric

OrchestrationProbe=CaptureExamResultsProbe}

{MonitoredObject=

CaptureExamResultsInstance}

{AssociatedActivity=

CaptureExamResults}

1 1

1

1

1 1

Figure 10: Monitoring Model for the PPI „DurationCaptureExamResults“

The DurationCaptureResultsPPIMonitor operates on a CaptureExamResultsProbe. This probe

provides state information about the MonitoredObject of type CaptureExamResultsInstance

which is associated with the process activity Capture Exam Results (see Figure 8). The actual

value is calculated by executing the linked MonitoringMetric. In this case, the metric uses a

generic algorithm for calculating the duration of an arbitrary ActivityInstance. This somewhat

simple algorithm works as follows:

 If (ActivityInstance.Status equals “Active”)
 ActualDuration = TimeSpan(CurrentTime, ActivityInstance.StartTime)
 Else if (ActivityInstance.Status equals “Completed”)
 ActualDuration = TimeSpan(ActivityInstance.EndTime, ActivityInstance.StartTime)

To retrieve the state information about the CaptureExamResultInstances for all running process

instances, the appropriate MonitoringsTasks are added to the orchestration model. As described

in section 6 in case an ActivityInstance should be monitored, a new sub-process is created con-

taining a sequence of the actual activity along with MonitoringTasks before and after die activ-

ity is performed. Figure 11 shows the instrumented orchestration model for the sample process.

Assess, capture and publish exam results

Retrieve Exam

Participant List

<<Service Task>>

Retrieve Exam

Participant List

<<Service Task>>

Store & Publish

Exam Results

<<Service Task>>

Store & Publish

Exam Results

<<Service Task>>

MonitoredCaptureExamResults

Capture Exam

Results

<<User Task>>

Capture Exam

Results

<<User Task>>

Send Capture Exam

Results Start

<<MonitoringTask>>

Send Capture Exam

Results Start

<<MonitoringTask>>

Send Capture Exam
Results Stop

<<MonitoringTask>>

Send Capture Exam
Results Stop

<<MonitoringTask>>

CaptureExamResultsInstance

Figure 11: Instrumented Orchestration Model

For the added MonitoringsTasks some additional properties are specified, for instance the end-

point reference to the employed MAImplementation. To create the executable BPEL process

definition we used the BPEL export functionality of the employed modelling tool (Borland

Together 6.0). As, amongst other things, the required variable assignments are missing in the

generated code and UserTasks are not supported at all, we had to manually add these aspects.

For this purpose, we used the Oracle BPEL Designer along with the corresponding BPEL en-

gine Oracle BPEL Manager. The final code for the sub process MonitoredCaptureExamResults

is as follows:

<scope name=“MonitoredCaptureExamsResult“>

[…]
<assign name="setCaptureExamResultsInstanceStart> [...] </assign>
<invoke name="sendCaptureExamResultsStartMessage" partnerLink="agentService"
operation="processMonitoringMessage" inputVariable="captureExamResultsInstance" […] "/>
<!-- UserTask: CaptureExamResults-->

<scope name="CaptureExamResults" […] xmlns:task="http://services.oracle.com/bpel/task">
 <partnerLinks>

 <partnerLink name="userTask" partnerLinkType="task:TaskManager"
 partnerRole="TaskManager" myRole="TaskManagerRequester" [...]/>

 </partnerLinks>
 [...]
</scope>
<assign name="setCaptureExamResultsInstanceCompleted"> [...] </assign>
<invoke name="sendCaptureExamResultsCompletedMessage" partnerLink="agentService"
operation="processMonitoringMessage" inputVariable="captureExamResultsInstance" […]/>

[…]
</scope>

Besides the XML representation of the MonitoredObject (here CaptureExamResulsInstance)

the MonitoringMessage contains an additional message part holding information about the

process instance ID along with the process ID. This information is required by the invoked

monitoring agent for correlating the messages with the respective instances of the associated

probe as well as the PPI monitor.

Our implementation of the monitoring infrastructure only consists of one monitoring agent for

the presented PPI which handles both, the provision of probes and the calculation of the PPI. It

would also be possible to decouple the provision of probes from the PPI monitoring. In doing

so, the integration of an existing BAM system would be easier. The provided probes would

have to be translated into events the BAM system understands within the scope of an

appropriate adapter.

8 Conclusion & Outlook

In this paper, we presented the first steps towards a model-driven development of orchestrations

along with the infrastructure for the monitoring of predefined PPIs. Thereby, the presented

meta-model for the specification of the PPI monitoring along with the extension of the BPMN

meta-model for modeling the required instrumentation and the sketched methodology for an

automated generation of this instrumentation represent the main contribution of this work. In

our future research we will try to achieve a fully automated generation of the orchestration

instrumentation along with the monitoring infrastructure based on UML profiles for the meta-

models and an adequate transformation language. Furthermore, we aim to extend the

monitoring to a larger variety of MonitoredObjects, including more complex transactions with

embedded sub transactions, and corresponding types of PPIs, especially aggregated PPIs. In this

case, the design of monitoring infrastructure would also have to be revised. In this context, we

are planning on using WBEM standards (especially the Common Information Model (CIM)

[BuST00]) in conjunction with WS-Management [DMTF06] for implementing the monitoring

infrastructure. This would enable an integration of the underlying application management and

hence allow for an integrated monitoring of business goals and the involved IT.

References

[AaHW03] van der Aalst, Wim M. P.; ter Hofstede, A. H. M.; Weske, M.: Business Process

Management: A Survey. In: Lecture Notes in Computer Science Band 2678.

Springer-Verlag, Berlin 2003, S. 1-12.

[ACDG03] Andrews, T.; Curbera, F.; Dholakia, H.; Goland, Y.; Klein, J.; Leymann, F.; Liu,

K.; Roller, D.; Smith, D.; Thatte, S.; Trickovic, I.; Weerawarana, S.: Business

Process Execution Language for Web Services 1.1.

ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf, 2003-05-

05, Abruf am 2006-07-21.

[BKPS04] Bayer, F.; Kühn, H.; Petzmann, A.; Schlossar, R.: Service-oriented Architecture

for Business Monitoring Systems. In: Panetto, H. (Hrsg.): Proceedings of the

Workshop on Web Services and Interoperability (WSI'05). Hermes Science

Publishing, Genf 2005, S. 127-134.

[BaMR04] Bauer, Bernhard; Müller, Jörg P.; Roser, Stephan: A Model-Driven Approach

to Designing Cross-Enterprise Business Processes. In: Lecture Notes in

Computer Science Band 3292. Springer-Verlag, Berlin 2004, S. 544–555.

[BuST00] Bumpus, W.; Schweitzer, J. W.; Thompson, P.: Common Information Model,

John Wiley & Sons Ltd., New York, 2000.

[DMTF06] Distributed Management Task Force (DMTF): Web Services for Management

(WS-Management) Specification Version 1.0.0a,

http://www.dmtf.org/standards/published_documents/DSP0226.pdf, 2006-04-

05, Abruf am 2006-07-21.

[FrGJ04] Frank, J. H.; Gardner, T. A.; Johnston, S. K.: Business Process Definition

Metamodel -Concepts and Overview.

http://www.bpmn.org/Documents/BPDM/BPDM%20Whitepaper%202004-05-

03.pdf, 2004-04-08, Abruf am 2006-07-21.

[EmWA06] Emig, Christian; Weisser, Jochen; Abeck, Sebastian: Development of SOA-

Based Software Systems – an Evolutionary Programming Approach. In:

International Conference on Internet and Web Applications and Services

ICIW'06, Guadeloupe, 2006.

 [HaRa01] Hauck, R.; Radisic, I.: Service Oriented Application Management — Do Current

Techniques Meet the Requirements?. In: New Developments in Distributed

Applications and Interoperable Systems, Proceedings of the 3rd IFIP

International Working Conference (DAIS 2001). Kluwer Academic Publishers,

Krakau 2001, S. 295–304.

[HeAN99] Hegering, H.-G.; Abeck, Sebastian; Neumair, B.: Integrated Management of

Networked Systems: Architecture, Tools, Operational Implementation. Morgan-

Kaufmann, San Francisco 1999.

[JeSC03] Jeng, J.-J.; Schiefer, J.; Chang, H.: An Agent-based Architecture for Analyzing

Business Processes of Real-Time Enterprises. In: Proceedings Seventh IEEE

International Enterprise Distributed Object Computing Conference (EDOC’03).

2003, S 86-97.

[JuMa05] Juling, W.; Maurer, A.: Karlsruher Integriertes InformationsManagement. In:

Praxis der Informationsverarbeitung und Kommunikation (2005) 3, S. 169-175.

[KHSW05] Koehler, J.; Hauser, R.; Sendall, S.; Wahler, M.: Declarative Techniques for

Model-driven Business Process Integration. In: IBM System Journal (2005) 44,

S. 47-65.

[KKLP05] Kloppmann, M.; Koenig, D.; Leymann, F.; Pfau, G.; Rickayzen, A.; von Riegen,

C.; Schmidt, P.; Trickovic, I.: WS-BPEL Extension for People (BPEL4People).

ftp://www6.software.ibm.com/software/developer/library/ws-bpel4people.pdf,

2005-07-01, Abruf am 2006-07-21.

[Le03] Leymann, Frank: Web Services - Distributed Applications without Limits,

Business, Technology and Web. Leipzig 2003.

[LeRS02] Leymann, Frank; Roller, Dieter; Schmidt, M.-T.: Web Services and business

process management. In: IBM Systems Journal (2002) 41, S. 198-211.

[Mc03] McGregor, Carolyn: A Method to Extend BPEL4WS to Enable Business

Performance Measurement.

http://www.cit.uws.edu.au/research/reports/paper/paper03/TR-CIT-15-2003.pdf,

2003-06-01, Abruf am 2006-07-21

[McSc04] McGregor, Carolyn; Schiefer, Josef: A Web-Service based framework for

analyzing and measuring business performance. In: Information Systems and e-

Business Management. Springer-Verlag, Berlin 2004, S. 89-110.

[MiMu01] Miller, Joaquin; Mukerji, Jishnu: Model Driven Architecture.

http://www.omg.org/docs/ormsc/01-07-01.pdf, 2001-07-01, Abruf am 2006-07-

21.

[MuRo04] zur Muehlen, M.; Rosemann, M.: Multi-Paradigm Process Management. In:

Grundspenkis, Janis; Kirikova, Marite (Hrsg.): Proceedings of CAiSE'04

Workshops - 5th Workshop on Business Process Modeling, Development and

Support (BPMDS 2004). Riga 2004, S. 169-175.

[PAVB04] Pignaton, R.; Asensio, J. I.; Villagrá, V.; Berrocal, J. J.: Developing QoS-aware

Component-Based Applications Using MDA Principles. In: Eighth International

Enterprise Distributed Object Computing Conference (EDOC 2004), 2004, S.

172-183

[Wh04] White, S. A.: Business Process Modeling Notation. BPMN 1.0.

http://www.bpmn.org/Documents/BPMN%20V1-0%20May%203%202004.pdf,

2004-5-03, Abruf am 2006-07-21

